机器学习已经成为了当今的热门话题,但是从机器学习这个概念诞生到机器学习技术的普遍应用经过了漫长的过程。在机器学习发展的历史长河中,众多优秀的学者为推动机器学习的发展做出了巨大的贡献。
来源 | 清华大学
从 1642 年 Pascal 发明的手摇式计算机,到 1949 年 Donald Hebb 提出的赫布理论——解释学习过程中大脑神经元所发生的变化,都蕴含着机器学习思想的萌芽。事实上, 1950 年图灵在关于图灵测试的文章中就已提及机器学习的概念。到了 1952 年, IBM 的亚瑟·塞缪尔(Arthur Samuel, 被誉为“机器学习之父”)设计了一款可以学习的西洋跳棋程序。塞缪尔和这个程序进行多场对弈后发现,随着时间的推移, 程序的棋艺变得越来越好。塞缪尔用这个程序推翻了以往“机器无法超越人类,不能像人一样写代码和学习”这一传统认识。并在 1956 年正式提出了“机器学习”这一概念。
本期的智能内参,我们推荐清华人工智能研究院的研究报告《人工智能之机器学习》,从机器学习的发展史、技术特点、人才概况、行业应用和未来趋势五大维度剖析机器学习技术。
什么是机器学习?
对机器学习的认识可以从多个方面进行,有着“全球机器学习教父”之称的Tom Mitchell 则将机器学习定义为:对于某类任务 T 和性能度量 P,如果计算机程序在 T 上以 P衡量的性能随着经验 E 而自我完善,就称这个计算机程序从经验 E 学习。
普遍认为,机器学习(Machine Learning,常简称为 ML)的处理系统和算法是主要通过找出数据里隐藏的模式进而做出预测的识别模式,它是人工智能(Artificial Intelligence,常简称为 AI)的一个重要子领域。
从机器学习发展的过程上来说,其发展的时间轴如下所示:
机器学习算法可以按照不同的标准来进行分类。比如按函数 f (x, θ)的不同, 机器学习算法可以分为线性模型和非线性模型;按照学习准则的不同,机器学习算法也可以分为统计方法和非统计方法。但一般来说,我们会按照训练样本提供的信息以及反馈方式的不同,将机器学习算法分为监督学习、无监督学习和强化学习。
1980 年机器学习作为一支独立的力量登上了历史舞台。在这之后的 10 年里出现了一些重要的方法和理论,典型的代表是:分类与回归树(CART,1984) 、 反向传播算(1986)、卷积神经网络(1989)。从 1990 到 2012年,机器学习逐渐走向成熟和应用,在这 20 多年里机器学习的理论和方法得到了完善和充实,可谓是百花齐放的年代。代表性的重要成果有:支持向量机(SVM, 1995) 、 AdaBoost 算法(1997)、 循环神经网络和LSTM(1997)、 流形学习(2000)、 随机森林(2001) 。
以下为本报告部分截图

